Free mRNA in excess upon polysome dissociation is a scaffold for protein multimerization to form stress granules
نویسندگان
چکیده
The sequence of events leading to stress granule assembly in stressed cells remains elusive. We show here, using isotope labeling and ion microprobe, that proportionally more RNA than proteins are present in stress granules than in surrounding cytoplasm. We further demonstrate that the delivery of single strand polynucleotides, mRNA and ssDNA, to the cytoplasm can trigger stress granule assembly. On the other hand, increasing the cytoplasmic level of mRNA-binding proteins like YB-1 can directly prevent the aggregation of mRNA by forming isolated mRNPs, as evidenced by atomic force microscopy. Interestingly, we also discovered that enucleated cells do form stress granules, demonstrating that the translocation to the cytoplasm of nuclear prion-like RNA-binding proteins like TIA-1 is dispensable for stress granule assembly. The results lead to an alternative view on stress granule formation based on the following sequence of events: after the massive dissociation of polysomes during stress, mRNA-stabilizing proteins like YB-1 are outnumbered by the burst of nonpolysomal mRNA. mRNA freed of ribosomes thus becomes accessible to mRNA-binding aggregation-prone proteins or misfolded proteins, which induces stress granule formation. Within the frame of this model, the shuttling of nuclear mRNA-stabilizing proteins to the cytoplasm could dissociate stress granules or prevent their assembly.
منابع مشابه
Stress granules: sites of mRNA triage that regulate mRNA stability and translatability.
Mammalian stress granules (SGs) are cytoplasmic domains into which mRNAs are sorted dynamically in response to phosphorylation of eukaryotic initiation factor (eIF) 2alpha, a key regulatory step in translational initiation. The activation of one or more of the eIF2alpha kinases leads to SG assembly by decreasing the levels of eIF2-GTP-tRNA(Met), the ternary complex that is normally required for...
متن کاملHeat shock causes a decrease in polysomes and the appearance of stress granules in trypanosomes independently of eIF2(alpha) phosphorylation at Thr169.
In trypanosomes there is an almost total reliance on post-transcriptional mechanisms to alter gene expression; here, heat shock was used to investigate the response to an environmental signal. Heat shock rapidly and reversibly induced a decrease in polysome abundance, and the consequent changes in mRNA metabolism were studied. Both heat shock and polysome dissociation were necessary for (1) a r...
متن کاملEscape from stress granule sequestration: another way to drug resistance?
Overexpression of P-glycoprotein, encoded by the MDR1 (multidrug resistance 1) gene, is often responsible for multidrug resistance and chemotherapy failure in cancer. We have demonstrated that, in leukaemic cells, P-glycoprotein expression is regulated at the translational level. More recently, we have shown that in cells overexpressing P-glycoprotein, MDR1 mRNA does not aggregate into translat...
متن کاملeIF5A Promotes Translation Elongation, Polysome Disassembly and Stress Granule Assembly
Stress granules (SGs) are cytoplasmic foci at which untranslated mRNAs accumulate in cells exposed to environmental stress. We have identified ornithine decarboxylase (ODC), an enzyme required for polyamine synthesis, and eIF5A, a polyamine (hypusine)-modified translation factor, as proteins required for arsenite-induced SG assembly. Knockdown of deoxyhypusine synthase (DHS) or treatment with a...
متن کاملZBP1 subcellular localization and association with stress granules is controlled by its Z-DNA binding domains
Z-DNA binding protein 1 (ZBP1) belongs to a family of proteins that contain the Zalpha domain, which binds specifically to left-handed Z-DNA and Z-RNA. Like all vertebrate proteins in the Zalpha family, it contains two Zalpha-like domains and is highly inducible by immunostimulation. Using circular dichroism spectroscopy and electrophoretic mobility shift assays we show that both Zalpha domains...
متن کامل